pSTarC: Pseudo Source Guided Target Clustering for Fully Test-Time Adaptation

Manogna Sreenivas[†], Goirik Chakrabarty^{*}, Soma Biswas[†]

[†] Image Analysis and Computer Vision Lab, Indian Institute of Science, Bengaluru, India *Indian Institute of Science Education and Research, Pune, India

WACV 2024

Test Time Adaptation

Training domain

(a) Rainy

(b) Snowy

(d) Sandy

Test domains

Objective: Given a source trained model, adapt it to unseen domain shifts during test time. **pSTarC**: **p**seudo-**S**ource Guided **Tar**get **C**lustering for Fully Test-Time Adaptation

DomainNet Dataset

Figure: Samples from DomainNet dataset demonstrating real world domain shifts.

- Online adaptation of models in real-time is increasingly important.
- Domain adaptation techniques aim to align distributions of training and testing data to improve model robustness.
- Four main topics in deep network robustness against distribution shifts:
 - Unsupervised Domain Adaptation (UDA)
 - Source Free Domain Adaptation (SFDA)
 - Test Time Adaptation (TTA)
 - Continuous Test Time Adaptation (CTTA)

Table: Domain adaptation protocols

Setting	Source-free	Adaptati	on protocol	Target domain		
		Offline	Online	Single	Continuous	
UDA		\checkmark		\checkmark		
SFDA	\checkmark	\checkmark		\checkmark		
TTA	\checkmark		\checkmark	\checkmark		
СТТА	\checkmark		\checkmark		\checkmark	

Given an off-the shelf model parameterized by θ , the objective of TTA is to adapt it using test batches \mathbf{x}_t arriving in an online manner from a test domain $\mathcal{D}_{test} \neq \mathcal{D}_{train}$ by minimizing a test time objective as

$$\arg\min_{\theta} \mathcal{L}_{test}(\mathbf{x}_t; \theta) \tag{1}$$

SFDA vs TTA

- SFDA methods:
 - Leverage abundant target domain samples.
 - Employ clustering objectives.

Attracting and Dispersing (AaD) ¹:

$$\mathcal{L}(\mathbf{x}_i) = -\sum_{\mathbf{p}_j \in \mathcal{N}_i} \mathbf{p}_i^T \mathbf{p}_j + \lambda \sum_{\mathbf{x}_m \in \mathbf{x}_t} \mathbf{p}_i^T \mathbf{p}_m$$

- TTA methods:
 - Classifier is fixed to preserve disciminative information learned from source.
 - Pseudo labeling, Entropy minimization² objectives employed to optimize a small set of network parameters.
- Can we employ SFDA objectives in TTA?

¹S. Yang et al., "Attracting and dispersing: A simple approach for source-free domain adaptation", NeurIPS 2022

²D. Wang et al., "Tent: Fully test-time adaptation by entropy minimization", ICLR 2021

pSTarC: pseudo-Source Guided Target Clustering for Fully Test-Time Adaptation

- 1. Pseudo-source Feature Generation:
 - The source trained classifier defined the decision boundaries.
 - As the classifier is fixed during adaptation, can we leverage this to synthesize pseudo source features?
- 2. Pseudo-source guided Target Clustering:
 - Leverage the generated pseudo source samples to effectively cluster the test data.

Pseudo Source Feature Generation

- Randomly initialize a feature bank $\mathbf{f} \in \mathcal{R}^{N \times d}$, $N = C \times n_c$.
- $\bullet\,$ Optimize f using entropy minimization and diversity maximization loss.

$$\mathcal{L}_{ent}\left(\mathbf{f};h\right) = -\frac{1}{N}\sum_{i=1}^{N}\sum_{k=1}^{C}p_{k}\log p_{k}; \qquad \mathcal{L}_{div}\left(\mathbf{f};h\right) = \sum_{k=1}^{C}\hat{p}_{k}\log\hat{p}_{k}$$

Pseudo Source features

Figure: Features Generated setting C to 12 and n_c to 20 for VisDA dataset.

Pseudo Source Guided Target Clustering

pSTarC

Experimental Results

Figure: Comparison of pSTarC with prior fully TTA methods.

L _{aug}	L_{attr}	L_{disp}	VisDA	DomainNet-126
1	1		68.8	58.8
✓		1	78.2	59.7
	1	1	80.0	63.0
1	~	\checkmark	81.9	63.7

Table: Ablation study on importance of each loss term.

	Batch size					A
Method	8	16	32	64	128	Average
TENT	38.8	55.4	58.6	59.1	58.9	54.2
AdaContrast	50.1	57.9	60.8	62.4	62.4	58.7
pSTarC	54.1	59.2	61.3	63.8	63.7	60.4

Table: Performance on varying batch size on DomainNet-126 dataset

Method	AdaContrast	Source-Proxy-TTA	C-SFDA	pSTarC
#Parameters	86M	43M	86M	43M
Memory	4.67M	3.76M	-	0.03M
#Forward	3	3	13	2
$\# {\sf Backward}$	1	1	1	1

Table: Complexity Analysis of TTA methods on VisDA

- In pSTarC framework, we propose a simple and efficient way to leverage fixed source classifier to generate pseudo source samples.
- Pseudo source samples generated, acting like a proxy for the labeled training data, can be effectively used to aid clustering the test samples during TTA.
- Experimental evidence on diverse datasets and setting including TTA and CTTA justify the effectiveness of the proposed pSTarC framework.

Thank You!